Hilfer fractional derivative is an important and interesting operator in fractional calculus, and it can be applicable in pure theories and other fields. It yields to other notable definitions, Ψ-Hilfer, (k,Ψ)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$(k,\\Psi )$\\end{document}-Hilfer derivatives, etc. Motivated by the concepts of the proportional fractional derivative and (k,Ψ)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$(k,\\Psi )$\\end{document}-Hilfer fractional derivative, we first introduce new definitions of integral and derivative, termed the (ρ,k,Ψ)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$(\\rho ,k,\\Psi )$\\end{document}-proportional integral and (ρ,k,Ψ)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$(\\rho ,k,\\Psi )$\\end{document}-proportional Hilfer fractional derivative. This type of fractional derivative is advantageous as it aligns with earlier studies on fractional differential equations. Additionally, we present a more generalized version of the (ρ,α,β,k,r)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$(\\rho ,\\alpha ,\\beta ,k,r)$\\end{document}-resolvent family, followed by an exploration of its properties. By analyzing the generalized resolvent family, we examine the existence of mild solutions to the (ρ,k,Ψ)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$(\\rho ,k,\\Psi )$\\end{document}-proportional Hilfer fractional Cauchy problem, supported by an illustrative example to show the main result.