For large classes of (finite and) infinite dimensional complex Banach spaces Z, B its open unit ball and f:B→B\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$f:B\\rightarrow B$$\\end{document} a compact holomorphic fixed-point free map, we introduce and define the Wolff hull, W(f), of f in ∂B\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\partial B$$\\end{document} and prove that W(f) is proximal to the images of all subsequential limits of the sequences of iterates (fn)n\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(f^n)_n$$\\end{document} of f. The Wolff hull generalises the concept of a Wolff point, where such a point can no longer be uniquely determined, and coincides with the Wolff point if Z is a Hilbert space. Recall that (fn)n\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(f^n)_n$$\\end{document} does not generally converge even in finite dimensions, compactness of f (i.e. f(B) is relatively compact) is necessary for convergence in the infinite dimensional Hilbert ball and all accumulation points Γ(f)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Gamma (f)$$\\end{document} of (fn)n\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(f^n)_n$$\\end{document} map B into ∂B\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\partial B$$\\end{document} (for any topology finer than the topology of pointwise convergence on B). The target set of f is T(f)=⋃g∈Γ(f)g(B).\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} T(f)=\\bigcup _{g \\in \\Gamma (f)} g(B). \\end{aligned}$$\\end{document}To locate T(f), we use a concept of closed convex holomorphic hull, Ch(x)⊂∂B\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\ ext {Ch}}(x) \\subset \\partial B$$\\end{document} for each x∈∂B\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$x \\in \\partial B$$\\end{document} and define a distinguished Wolff hull W(f). We show that the Wolff hull intersects all hulls from T(f), namely W(f)∩Ch(x)≠∅for allx∈T(f).\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} W(f) \\cap {\ ext {Ch}}(x)\ e \\emptyset \\ \\ \\hbox {for all}\\ \\ x \\in T(f). \\end{aligned}$$\\end{document}If B is the Hilbert ball, W(f) is the Wolff point, and this is the usual Denjoy–Wolff result. Our results are for all reflexive Banach spaces having a homogeneous ball (or equivalently, for all finite rank JB∗\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$JB^*$$\\end{document}-triples). These include many well-known operator spaces, for example, L(H, K), where either H or K is finite dimensional.