Abstract: Traffic analysis plays an important role in a transportation system for traffic management. Traffic analysis system using computer vision project paper proposes the video based data for vehicle detection and counting systems based on the computer vision. In most Transportation Systems cameras are installed in fixed locations. Vehicle detection is the most important requirement in traffic analysis part. Vehicle detection, tracking, classification and counting is very useful for people and government for traffic flow, highway monitoring, traffic planning. Vehicle analysis will supply with information about traffic flow, traffic summit times on road. The motivation of visual object detection is to track the vehicle position and then tracking in successive frames is to detect and connect target vehicles for frames. Recognising vehicles in an ongoing video is useful for traffic analysis. Recognizing what kind of vehicle in an ongoing video is helpful for traffic analysing. this system can classify the vehicle into bicycle, bus, truck, car and motorcycle. In this system I have used a video-based vehicle counting method in a highway traffic video capture using cctv camera. Project presents the analysis of tracking-by-detection approach which includes detection by YOLO(You Only Look Once) and tracking by SORT(simple online and realtime tracking) algorithm. Keywords: Vehicle detection, Vehicle tracking, Vehicle counting, YOLO, SORT, Analysis, Kalman filter, Hungarian algorithm.