Emissions from internal combustion engine vehicles on highways are the major contributors to global warming in the United States. Transportation sector pavement-related emissions come from gasolines and diesel use in vehicles from pavement-vehicle interaction, which is affected by pavement conditions, and by the trucking of new pavement materials and demolition. The objective of this study was to develop a framework for determining the fuel use resulting in environmental impacts caused by construction work zones (CWZs) on a range of vehicles and to produce initial calculations of these impacts by modeling traffic closure conditions for highway maintenance and rehabilitation activities. The study included two common highway categories—freeways/multi-lane highways and two-lane highways. The framework was demonstrated using three CWZ operations under different traffic congestion levels. In the simulation results for a freeway with a CWZ and heavy congestion, fuel consumption increased by 85% and the carbon-dioxide equivalent emissions increased by 86%. Changing CWZ traffic congestion from heavy (average speed 5 mph) to medium (average speed 25 mph for a freeway section) reduced fuel consumption by 40% on a freeway. This study also included use of a pilot car in a CWZ on a two-lane road typical of lower traffic volume state highways and county roads to compare with the drive cycles in MOVES used for the scenarios. The pilot-car operation scenario results indicate that a one-lane closure with pilot-car operation on a two-lane road might consume 13% excess fuel because of idling time and the slow movement of vehicles following the pilot car.
Read full abstract