Homologous recombination repair deficiency (HRD) is involved in the development of high-grade serous ovarian carcinoma (HGSOC) and its elevated sensitivity to platinum-based chemotherapy. To investigate the heterogeneity of the HRD-positive HGSOC we evaluated the HRD status, including BRCA mutations, genomic scar score, and methylation status of BRCA1/2 genes in 352 HGSOC specimens. We then divided the HRD-positive cohort into three molecular subgroups, the BRCA mutation cohort (BRCA+), BRCA1 methylation cohort (Meth+), and the rest of the HRD+ cohort (HRD+BRCA-Meth-), and evaluated their first-line chemotherapy response, benefit from olaparib, and progression-free survival (PFS). HRD-positive status was detected in 65% (228/352) of samples. The first group, BRCA+, accounted for 45% (102/228) of HRD positive cases and showed the best outcome in platinum therapy (ORR 96%), the highest olaparib benefit (p = 0.006) and the highest median PFS (46 months). The frequency of the second cohort, Meth+, among HRD-positive patients was 23% (52/228). Patients with Meth+ HGSOC showed a significantly poorer outcome, with a median PFS of 19 months, a significantly lower ORR to platinum therapy (84%) and a modest, but not significant, benefit from olaparib maintenance. The third HRD+BRCA-Meth- group accounted for 32% (74/228) of HRD-positive patients and showed an ORR to platinum therapy similar to that of the BRCA+ group (90%), a higher, but not statistically significant, benefit from olaparib and a median PFS of 23 months. In conclusion, Meth+ subgroup had poor outcomes in terms of chemotherapy response, olaparib benefit, and PFS compared to the other HRD+ subgroups, requiring a more thorough follow-up.
Read full abstract