Biomimetic periodic structures have garnered attention due to their excellent water repellency. The normal-taper angle, which is aspects of the cross-sectional structure, is important factor in achieving water repellency and pressure resistance; however, the underlying physical phenomenon has not been fully explained. Moreover, once a surface becomes hydrophobic, it is difficult to measure the apparent contact angle. The purpose of this paper is to clarify the taper angle that provides high water repellency under pressure impact conditions by formulating the relationship between the taper angle and the height of a droplet bouncing, instead of traditional contact angles, using experimental results. We fabricated multiple samples with different taper angles and groove width/tooth width ratios, through micro-processing using a femtosecond-pulsed laser and a control algorithm, and investigated their effects on water repellency. By using height of a droplet bouncing as an evaluation parameter, we were able to effectively differentiate between taper angles in terms of water repellency. Additionally, we suggested that in the bouncing phenomenon, where droplets are given velocity by falling, the sidewall of the periodic structure and the taper angle affect liquid repellency. To explain this phenomenon, we proposed a pressured-taper angle model where a droplet is pressed against the taper angle. Based on both experimental findings and the pressured-taper angle model, a relationship between the equilibrium contact angle, the taper angle, and the lifting force angle was revealed. Moreover, using this pressured-taper angle model, the taper angle of the periodic structure to achieve maximum liquid repellency was estimated from the equilibrium contact angle of the base material.
Read full abstract