The role of nanoparticles in the stabilizing interface is very important in the preparation of stable Pickering emulsions. In this study, ternary composite nanoparticles (ZQ-HC) were synthesized by complexing zein-quercetin covalent complex (ZQ) with quaternary ammonium chitosan (HTCC) and subsequently stabilized Pickering emulsions (ZQ-HC) with antibacterial activity. Results revealed that HTCC covers the surface of ZQ nanoparticles successfully, which designates an effective improvement in the surface wettability of ZQ effectively. Among them, ZQ-HC2:1 possesses the closest three-phase contact angle of 90° and the highest emulsification activity and emulsion stability. The results of ultra-high resolution microscopy showed that ZQ-HC nanoparticles were adsorbed at the oil-water interface to prevent droplet aggregation and improved the pH, ionic strength, and storage stability of the prepared Pickering emulsions. ZQ-HC nanoparticles construct an antioxidant barrier at the oil-water interface, improving the lipid oxidation stability of the emulsion. The ZQ-HC2:1 stabilized Pickering emulsion exhibits the most superior stability and strongest antibacterial activity against other emulsions. The ZQ-HC stabilized Pickering emulsions prepared in this study exhibit potential for use as carriers of bioactive ingredients in food applications.
Read full abstract