Turning tests were carried out on selected hard alloys on iron (FeCr12C2.1, FeCr13Nb9MoTiC2.3, FeCr14Mo5WVC4.2) and cobalt basis (CoCr29W5C1.3) in a cutting speed range of between v c = m/min and 180 m/min. Polycrystalline cubic boron nitride (PCBN) turned out to be a suitable tool material. Subsequent examinations focused on evaluating the mechanisms of chip formation, cutting tool wear and surface integrity of the workpiece. During turning of hard alloys the formation of chips is primarily influenced by the ductility and fracture toughness of the work material. While a ductile matrix enables the formation of highly deformable chips, the chips stemming from martensitically hardened alloys show low deformation. As the cutting depth increases shear and segmented chips are chiefly produced. Type and arrangement of the hard phases play a significant role. Adhesion is the main wear mechanism impacting the cutting face of the tool. Particularly, strong adhesion effects will arise during the machining of the work hardening alloy on cobalt basis. A high cobalt content of the metallic bonding phase of the PCBN cutting tool appears to be a disadvantage with this type of work material. When machining alloys on iron basis adhesion is promoted by the mechanical linking of alloy-specific hard phases to the cutting material binder. Abrasion primarily acts on the flank. The hard carbides of the work material produce typical grooves in the cutting edge zone of the tool. The flank wear increases as the carbide content goes up. As the cutting speed rises the tool wear ascertained passes through a minimum. Whereas the formation of built-up cutting edges predominates at lower speeds, a thermal softening of the PCBN binder takes place and is dominating at high cutting speeds. The location of the wear minimum depends not only on the cutting temperature but also on the strain hardening capability of the metal matrix. Raising the cutting speed will cause the cutting force to continuously reduce. The highest cutting forces are found for the Co-based alloy. The passive forces develop in line with cutting tool wear and vary with content and hardness of the hard phases involved. The selected process parameters also affect the surface near zone. With low cutting speeds and process temperatures the surface is mainly stressed mechanically. Carbides break or detach from the surrounding matrix. If the cutting speed and process temperature are increased the eutectic carbides (M 7 C 3 ) are deformed together with the metal matrix. Microhardness profiles are indicative of near-surface strain-hardened zones after cutting of the Co-based alloy. Fe-based matrices do not show hardness changes worth mentioning. Although there are no new hardened zones noticeable even at maximum cutting speed, the matrix is nevertheless influenced thermally so that residual stresses will develop in the machined surface layer. In the lower cutting speed range the surface quality is characterized by flakes and material squeezing (Co-based alloy) and by spalling (Fe-based alloy). Only if the cutting speed is raised, a minor roughness is detected due to a potential deformation of eutectic hard phases.
Read full abstract