Piezocatalytic hydrogen peroxide (H2O2) production is an emerging and green technology, but complex preparation process of piezocatalyst and low production rate limit its practical application. Herein, we propose a straightforward and efficient strategy, that is, fabricating a novel terraced potassium sodium niobate (KNN-H) by integrating high-energy pendulum ball-milling into the conventional solid-state method, to control the morphology of piezocatalyst and boost its piezocatalytic activities. By exposing a large number of edge sites with higher piezoelectric response and more active sites, KNN-H sample exhibits an extremely high H2O2 production rate of 47 μmol/h, about 35 times higher than that of previously reported potassium niobate piezocatalyst. Besides, KNN-H sample also has good effects on dye degradation and bacterial inhibition. Therefore, our strategy provides a paradigm for large-scale fabrication of high-performance perovskite piezocatalysts.
Read full abstract