In the paper we study the question of the solvability and unique solvability of systems of the higher order differential equations with the argument deviations \begin{equation*} u_i^{(m_i)}(t)=p_i(t)u_{i+1}(\tau _{i}(t))+ q_i(t), (i=\overline {1, n}), \text {for $t\in I:=[a, b]$}, \end{equation*} and \begin{equation*}u_i^{(m_i)} (t)=F_{i}(u)(t)+q_{0i}(t), (i = \overline {1, n}), \text {for $ t\in I$}, \end{equation*} under the conjugate $u_i^{(j_1-1)}(a)=a_{i j_1}$, $u_i^{(j_2-1)}(b)=b_{i j_2}$, $j_1=\overline {1, k_i}$, $j_2=\overline {1, m_i-k_i}$, $i=\overline {1, n}$, and the right-focal $u_i^{(j_1-1)}(a)=a_{i j_1}$, $u_i^{(j_2-1)}(b)=b_{i j_2}$, $j_1=\overline {1, k_i}$, $j_2=\overline {k_i+1,m_i}$, $i=\overline {1, n}$, boundary conditions, where $u_{n+1}=u_1, $ $n\geq 2, $ $m_i\geq 2, $ $p_i \in L_{\infty }(I; R), $ $q_i, q_{0i}\in L(I; R), $ $\tau _i\colon I\to I$ are the measurable functions, $F_i$ are the local Caratheodory's class operators, and $k_i$ is the integer part of the number $m_i/2$.In the paper are obtained the efficient sufficient conditions that guarantee the unique solvability of the linear problems and take into the account explicitly the effect of argument deviations, and on the basis of these results are proved new conditions of the solvability and unique solvability for the nonlinear problems.