Metal injection molding of aluminium alloy (MIM-Al) attracts attention, owing to the lightweight, corrosion resistance and good thermal conductivity. However, it is hard to fabricate high-quality MIM-Al due to the hard-to-sinter powder and poor mechanical properties. Here, we report a facile compression molding process for fabricating high-density 7075Al alloy parts using polyformaldehyde (POM)-based feedstock. Pressureless sintering with a high nitrogen flow rate was adopted to promote sintering densification process. The wetting behavior, rheological properties, and morphology of the feedstock were characterized, showcasing the shear-thinning behavior and suitable viscosity for POM-PP-SA binder. Through controlling the compact pressure, mold temperature and holding time, green gear part with good shape retention and dense microstructure was achieved. Influence of process factors and sintering temperature on the microstructure and mechanical properties of 7075Al alloy are investigated. Remarkably, the aluminum alloy components sintered at 610 °C exhibited excellent performance, with a relative density reaching 97.6 % and a tensile strength of 214.8 MPa. This achievement provides a foundation for the industrial application of complex-shaped aluminum alloy components through the compression molding process.
Read full abstract