Nanometer-thick two-dimensional (2D) materials are becoming ideal fillers for designing mixed matrix membranes (MMMs) with high gas permeability and selectivity due to their unique structures. ZIF-67@BNNS composite fillers were prepared by combining boron nitride nanosheets (BNNS), a thermally stable and chemically inert two-dimensional material, with the metal-organic framework ZIF-67. By incorporating these materials into polyetherimide (PEI), MMMs with efficient hydrogen (H2) separation performance have been developed. The -NH2 groups on the BNNS surface provide a growth site for cobalt (Co) ions, facilitating the construction of a two-dimensional continuous channel by growing a ZIF-67 layer in situ on the BNNS surface. The inherent micropores of ZIF-67 create internal channels for gas transport within the composite packing, increasing gas permeability. The interlaced BNNS layer provides an external channel for gas transport, increasing resistance and contributing to improved gas selectivity. At a low loading of 1 wt%, the PEI/ZIF-67@BNNS-0.2 MMMs exhibited a 199 % increase in H2 permeability and 87 % improvement in H2/CO2 selectivity compared to pure PEI membranes. In addition, these MMMs exhibit strong thermal stability and mechanical properties, making them promising for H2 separation applications.
Read full abstract