To determine what thickness of 5 mol% yttria zirconia (5Y-Z) translucent crowns cemented with different cements and surface treatments would have equivalent fracture resistance as 3 mol% yttria (3Y-Z) crowns. The study included 0.8 mm, 1.0 mm, and 1.2 mm thickness 5Y-Z (Katana UTML) crowns and 0.5 and 1.0 mm thickness 3Y-Z (Katana HT) crowns as controls. The 5Y-Z crowns were divided among three treatment subgroups (n = 10/subgroup): (1) cemented using RMGIC (Rely X Luting Cement), (2) alumina particle-abraded then luted with the same cement, (3) alumina particle-abraded and cemented using a resin cement (Panavia SA Cement Universal). The 3Y-Z controls were alumina particle-abraded then cemented with RMGIC. The specimens were then loaded in compression at 30° until failure. All 5Y-Z crowns (regardless of thickness or surface treatment) had a similar to or higher fracture force than the 0.5 mm 3Y-Z crowns. Only the 1.2 mm 5Y-Z crowns with resin cement showed significantly similar fracture force to the 1 mm 3Y-Z crowns. In order to achieve a similar fracture resistance to 0.5 mm 3Y-Z crowns cemented with RMGIC, 5Y-Z crowns may be as thin as 0.8 mm. To achieve a similar fracture resistance to 1.0 mm 3Y-Z crowns cemented with RMGIC, 5Y-Z crowns must be 1.2 mm and bonded with resin cement.