This research examines whetherthe groundwater in the Sivakasi Region of South India is suitable for consumption, and assesses the possible health hazards for various age demographics including infants, children, teenagers, and adults. A totalof 77 groundwater samples were gathered, covering a total area of 580km2 and analyzed for major and minor ions. The hydrogen ion concentration (pH) of the samples indicates neutral to marginally alkaline. The total dissolved solids (TDS) fluctuate from 255 to 2701mg/l and electrical conductivity varies from 364 to 3540µS/cm. A wide range of fluoride concentration was detected (0.1 to 3.2mg/l) with nearly 38% groundwater samples surpassing the proposed limit (1.5 mg/l) suggestedby the World Health Organization in 2017. Gibbs plot analysis suggested that most of thesamples were influenced by geogenic factors, primarily rock weathering in this region. Correlation analysis showed that most of the samples were impacted by both natural and human sources. The pollution index of groundwater (PIG) fluctuated from 0.67 to 2.60 with approximately 30% and 53% of samples falling into insignificant and low pollution categories, respectively. Furthermore, 10% and 5% of total samples were characterized as moderate and high pollution levels, and 2% asvery high pollution category. Spatial analysis using GIS revealed that 440.63km2 were within safe fluoride levels according to theWHO standards, while 139.32km2 were identified as risk zone. The principal component analysis (PCA1) showedstrong positive loadings on EC (0.994), TDS (0.905), Mg2+ (0.910), Cl- (0.903) and HCO3- (0.923) indicating rock water interaction. PCA2 accounts the high positive factor loading on HCO3- (0.864) indicating ion exchange and mineral leaching. The PCA1 and PCA2 indicated that variables such as mineral leaching and rock water interaction are themajor mechanisms contributing to the chemical signatures in groundwater, which may support for theelevated fluoride levels in certain areas. Risk assessments, including Hazard Quotient results showed that 71%, 61% 38%, and 34% of groundwater samples exceededthe permissible THI limit (THI > 1) for infants, children, teenagers, and adults, respectively. The study recommends implementing measures such as denitrification, defluorination, rainwater harvesting, and improved sanitation infrastructure to enhance the health conditions in the study region. Additionally, it suggests introducing educational programs in rural areas to create awarenessabout the health dangers due to consumptionof water with high fluoride levels.
Read full abstract