In this research, new nano buds of C60 fullerene compound and nanobowls were designed and their structure, electrical properties and optical properties were calculated. The absence of imaginary frequency and high cohesive energies is proof of stability and confirmation of the possibility of their formation. Calculation of the relative population showed that the E configuration is the dominant population. The calculation of electrical properties showed that combining the structures with each other improves the electrical properties of nanobuds. The highest electric charge transfer from nanobowl to C60 was observed in the configuration of C nanobuds. A high improvement in NLO properties was observed in all nanobud configurations. Calculating the contribution of the dispersion term in the energy of the nanobuds showed that compared to the parents, larger dispersion energy was obtained for the designed nanobuds (especially configuration E). It was shown that the energy of nano buds and their parents decreases in the presence of solvents. The decrease in energy as a function of increasing the dielectric constant of the solvents may be due to the increase in the dipole moments of the nanobud as a result of the electron transfer from the nanobowl to the C60 fullerene.
Read full abstract