The conservation of power in wireless sensor networks (WSNs) is critical due to the difficulty of replacing or recharging batteries in remote sensor nodes. Additionally, sensor node failure is inevitable in WSNs. In order to overcome these difficulties, this study proposes an N-policy M/M/1 queuing system model with an unstable server. This model offers insightful information for improving performance, maximizing energy use, and prolonging the lifespan of WSNs. The study looks into how different parameters and N-values affect the system's performance by examining the average system size under various scenarios. Important performance parameters are taken into consideration in the suggested model, including the total system size and the average number of data packets in the busy, idle, and down stages. These measurements aid in the comprehension of the behavior of the system and direct the N-policy optimization process to reduce setup, holding, server downtime, and operating state expenses. The analytical results are supported by numerical representations that show system size is reduced by higher repair and service rates and increased by higher breakdown rates. The cost function is estimated using MATLAB simulations, which also find the ideal N-value to reduce the overall predicted cost per unit of time. The findings demonstrate that an ideal N-policy can greatly enhance system performance and energy efficiency, guaranteeing the WSN functions well even in the face of node failure and power limitations. Based on in-depth numerical analysis and performance evaluation, this paper offers a thorough framework for improving WSN efficiency and reliability through strategic N-policy implementation.