We consider a version of the typical state firewall setup recently reintroduced by Stanford and Yang, who found that wormholes may create firewalls. We examine a late-time scaling limit in JT gravity in which one can resum the expansion in the number of wormholes, and we use this to study the exact distribution of interior slices at times exponential in the entropy. We consider a thermofield double with and without early perturbations on a boundary. These perturbations can appear on interior slices as dangerous high energy shockwaves. For exponentially late times, wormholes tend to teleport the particles created by perturbations and render the interior more dangerous. In states with many perturbations separated by large times, the probability of a safe interior is exponentially small, even though these would be safe without wormholes. With perturbation, even in the safest state we conceive, the odds of encountering a shock are fifty-fifty. One interpretation of the phenomenon is that wormholes can change time-ordered contours into effective out-of-time-ordered folds, making shockwaves appear in unexpected places.