Experiments exploring the propagation of heat waves within cylindrical CH foams were performed on the Shenguang-III prototype laser facility in 2012. In this paper, the radiation fluxes out of CH foam cylinders at different angles are analyzed theoretically using the two-dimensional radiation hydrodynamics code LARED-R. Owing to the difficulty in validating opacity and equation of state (EOS) data for high-Z plasmas, and to uncertainties in the measured radiation temperature Tr and the original foam density ρ0, multipliers are introduced to adjust the Au material parameters, Tr, and ρ0 in our simulations to better explain the measurements. The dependences of the peak radiation flux Fmax and the breakout time of the heat wave thalf (defined as the time corresponding to the radiation flux at half-maximum) on the radiation source, opacity, EOS, and ρ0 scaling factors (ηsrc, ηop, ηeos, and ηρ) are investigated via numerical simulations combined with fitting. Then, with the uncertainties in the measured Tr and ρ0 fixed at 3.6% and 3.1%, respectively, experimental data are exploited as fiducial values to determine the ranges of ηop and ηeos. It is found that the ranges of ηop and ηeos fixed by this experiment overlap partially with those found in our previous work [Meng et al., Phys. Plasmas 20, 092704 (2013)]. Based on the scaled opacity and EOS parameters, the values of Fmax and thalf obtained via simulations are in good agreement with the measurements, with maximum errors ∼9.5% and within 100 ps, respectively.
Read full abstract