A successful attempt to produce a multi-function glass shield for attenuating neutrons and gamma rays by reinforcing a silicate glass network with boron and bismuth has been accomplished. A composition of 20SiO2-80Na2O (BSiBi0) was proposed to be used as a host glass network and prepared using the melt/annealing techniques. The low concentration of SiO2 in BSiBi0 was not sufficient to form a stable glass network. Then, the proposed BSiBi0 was modified with 10, 20, 30, and 40 mol% of each of B2O3 and Bi2O3 (BSiBi1, BSiBi2, BSiBi3, and BSiBi4) simultaneously. The structural effects of adding B3+ and Bi3+ were studied through X-ray diffraction, density, and FTIR, which all showed enhancement of glass forming ability, a former role of Bi3+ ions, and crowded the glass network by BO4 units. The derived structural parameters -\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$-$$\\end{document} molar volume, mean silicon – silicon separation, mean boron – boron separation, oxygen packing density, packing density, and number of bridging/non-bridging oxygen -\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$-$$\\end{document} were extensively discussed to explore the impact of B3+ and Bi3+ on the formed network. The richness of the proposed host glass network by B3+ and Bi3+ enhanced its thermal stability. The obtained elastic properties by ultrasonic measurements reflect the increase of the glass rigidity with increasing concentrations of B3+ and Bi3+ ions. The obtained glasses have high visible light transparency and almost complete UV absorption. The measured shielding parameters against two types of neutron energies (total slow and slow) and a wide range of gamma rays’ energies showed a significant improvement in the shielding efficiency of the considered glasses. The total slow neutrons, slow neutrons, and gamma rays’ attenuation abilities were improved by 22.9, 135.5, and 73.8 -\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$-$$\\end{document} 199.5%. High thermal stability, elasticity, visible light transparency, and neutrons and gamma rays’ attenuation performance features give the produced glasses, especially BSiBi4 glass, preference as shielding materials in nuclear fields.
Read full abstract