This study aims to fabricate WC-Co-Cr coatings on the solution-treated 21-4N steel utilizing high-velocity oxy-fuel (HVOF) and high-velocity air fuel (HVAF) techniques. The microstructure, hardness, surface quality, porosity, slurry erosion, and corrosion resistance of HVOF and HVAF coatings on solution-treated 21-4N steel were investigated and compared. The HVAF sprayed WC-Co-Cr coating exhibited dense structure, more hardness (1582 HV), greater fracture toughness (5.69 MPa m1/2), less decarburization, and lower porosity (0.97 %) as compared to HVOF sprayed coating. Further, slurry jet erosion tests and electrochemical corrosion tests provide a comprehensive evaluation of the coating’s performance under erosive and corrosive conditions. Eventually, the conclusive results of the study affirm the exceptional performance of the high-velocity air fuel sprayed WC-Co-Cr coating, demonstrating its superiority in both erosion and corrosion resistance compared to the high-velocity oxygen fuel sprayed coating.