Abstract The snow albedo is a vital component of land–atmosphere coupling models. It plays a critical role in regulating land surface energy exchange by controlling incoming solar radiation absorbed by the land surface and influencing the timing and rate of snowmelt. Accurate snow albedo simulation is essential to obtain surface energy balance and snow-cover estimates. Here, the simulation of albedo and snow cover using the Weather Research and Forecasting Model and an improved snow albedo scheme is verified against satellite-retrieved products during and immediately following eight snowfall events over the Tibetan Plateau. The improved model successfully characterizes the spatial pattern and inverted U-shaped temporal pattern of albedo over the entire Tibetan Plateau. This is attributed to the local optimization of snow-age parameters and explicit consideration of snow depth in the improved scheme. Compared with the previous model, the model proposed herein greatly decreases the overestimated albedo (by 0.13–0.27), yielding a bias range of ±0.08, mean relative bias decrease of 70%, and significant increase in the spatial correlation coefficient of 0.03–0.39 (mean: 0.13). The significant improvements of albedo estimates appear in deep snow-covered regions, largely attributed to parameter optimization related to snow albedo decay, while less improvements appear over the shallow snow-covered regions. Accurate reproduction of the spatiotemporal variation in albedo alleviated snow-cover overestimation by small amounts. For snow-cover estimates, the improved model consistently decreases the false-alarm rate by 0.03, and increases the overall accuracy and equitable threat score by 0.04 and 0.03, respectively. Moreover, the improved scheme shows an equivalent improvement of albedo estimates at both 1- and 5-km grid spacing over the eastern Tibetan Plateau; this is also true for snow-cover estimates. Significance Statement Snow albedo schemes in widely used numerical weather prediction models show notable shortcomings in complex mountainous regions, hindering accurate surface energy balance and snow-cover prediction. The purpose of this study is to better understand the role of snow albedo on snow-cover estimates and reveal the application potential of an improved snow albedo scheme across the Tibetan Plateau. This is important because snow albedo influences the timing and rate of snowmelt, and in turn snow-cover estimates, through regulating the surface energy budget. Our results highlight the strong application potential of our improved scheme in reducing snow simulation errors, confirm the importance of snow depth on snow albedo, and provide a new perspective for improving the accuracy of snow forecast over the topographically high Tibetan Plateau.
Read full abstract