While the terms "gene-by-gene interaction" (GxG) and "gene-by-environment interaction" (GxE) are widely recognized in the fields of quantitative and evolutionary genetics, "environment-byenvironment interaction" (ExE) is a term used less often. In this study, we find that environmentby-environment interactions are a meaningful driver of phenotypes, and moreover, that they differ across different genotypes (suggestive of ExExG). To support this conclusion, we analyzed a large dataset of roughly 1,000 mutant yeast strains with varying degrees of resistance to different antifungal drugs. Our findings reveal that the effectiveness of a drug combination, relative to single drugs, often differs across drug resistant mutants. Remarkably, even mutants that differ by only a single nucleotide change can have dramatically different drug x drug (ExE) interactions. We also introduce a new framework that more accurately predicts the direction and magnitude of ExE interactions for some mutants. Understanding how ExE interactions change across genotypes (ExExG) is crucial not only for modeling the evolution of pathogenic microbes, but also for enhancing our knowledge of the underlying cell biology and the sources of phenotypic variance within populations. While the significance of ExExG interactions has been overlooked in evolutionary and population genetics, these fields and others stand to benefit from understanding how these interactions shape the complex behavior of living systems.
Read full abstract