The aim of this paper is to present feasibility of application of High Temperature Superconducting (HTS) cables for Space-Based Solar Power (SBSP) application. SBSP is a promising technology that can deliver an infinite amount of clean and eco-friendly energy to the Earth. To deliver the harvested solar energy to the power systems on Earth, efficient energy transmission is critically important. To address the challenges of conventional transmission means, an ideal solution would be using HTS cables. In this research, the design procedure of a Direct Current (DC) HTS cable considering electromagnetic, thermal, and cost constraints is presented. The study considered a 2 MW bipolar DC HTS cable in five operational temperatures: 20 K, 30 K, 50 K, 65 K, and 77 K. The results were showed that the cost and weight of the designed HTS cables were increased by operational temperature increase. However, the cooling cost of HTS cable in higher temperatures, was less than lower temperatures. Also, the total efficiency of the HTS cable and cooling system were increased, when operational temperatures were changed from 20 K to 77 K, from 99.70% to 99.97%, respectively.
Read full abstract