In this study, the processes of thermal decomposition of wood during its treatment with a plasma flow are considered. To develop a mathematical model of these processes, a differential thermogravimetric analysis of the heating of larch samples in an argon atmosphere at a rate of 10–20 degrees/min is carried out. Based on the results obtained, a mathematical model of thermal decomposition is proposed, including four stages. The wood during heating is represented by a mixture of six components. At each stage, the kinetic parameters of the reactions are determined by processing measurements at a heating rate of 20 degrees/min. The equations of chemical kinetics describing changes in the mass of wood components are numerically solved using the finite-difference implicit Euler method and the obtained reaction parameters. The numerical solution to the equations of chemical kinetics with these parameters shows satisfactory agreement with the data from the corresponding experiment. The calculation performed at a heating rate of 10 degrees/min with the same kinetic parameters also shows satisfactory agreement with the measurements. Thus, the obtained reaction parameters do not depend on the heating rate in the considered range. The proposed model can be used in the mathematical description of changes in the structure and thermal state of wood samples exposed to high-temperature plasma flow treatment.
Read full abstract