Wrought high Nb containing (high Nb-TiAl) alloys are potential materials for low pressure turbine blades in aero-engines. The performance and microstructure evolution under high temperature creep condition is of importance to the service stability of these materials. In this study, the internal strain and FWHM evolution of an extruded TNB-based high Nb-TiAl alloy during compressive creep are characterized by in-situ high energy X-ray diffraction (HEXRD) technique for the first time. The compressive creep test was conducted under a constant load of 300 MPa at 900 °C for 10 h in vacuum. The final creep strain is approximately 1.72 %. The microstructure and phase constitution after creep shows little difference from that before creep. Lattice strain analysis shows that γ phase is plastically deformed while the α2 phase deforms elastically due to the low creep strain. The lattice strain of α2 grains is dependent upon the deformation of surrounding γ grains. Creep induces dynamic recovery, exerting a softening effect. A high number of dislocations are visible in the γ lamellae while almost no dislocations exist within the α2 lamellae. α2 lamellae are partially decomposed and refined via the α2→γ transformation.