AbstractSodium dispersion promotes reductive ring opening of arylcyclopropanes. The presence of a reduction-resistant electrophile, such as methoxypinacolatoborane, epoxide, oxetane, paraformaldehyde, or chlorotrimethylsilane, during the reductive ring opening event leads to the formation of 1,3-difunctionalized 1-arylalkanes by immediate trappings of the resulting two reactive carbanions. In particular, the ring-opening 1,3-diborylations of arylcyclopropanes afford 1,3-diborylalkanes with high syn selectivity.
Read full abstract