This paper introduces a methodology for visualizing large real-world (social) network data on a high-resolution tiled display system. Advances in network drawing algorithms enabled real-time visualization and interactive exploration of large real-world networks. However, visualization on a typical desktop monitor remains challenging due to the limited amount of screen space and ever increasing size of real-world datasets.To solve this problem, we propose an integrated approach that employs state-of-the-art network visualization algorithms on a tiled display system consisting of multiple screens. Key to our approach is to use the machine’s graphics processing units (GPUs) to their fullest extent, in order to ensure an interactive setting with real-time visualization. To realize this, we extended a recent GPU-based implementation of a force-directed graph layout algorithm to multiple GPUs and combined this with a distributed rendering approach in which each graphics card in the tiled display system renders precisely the part of the network to be displayed on the monitors attached to it.Our evaluation of the approach on a 12-screen 25 megapixels tiled display system with three GPUs, demonstrates interactive performance at 60 frames per second for real-world networks with tens of thousands of nodes and edges. This constitutes a performance improvement of approximately 4 times over a single GPU implementation. All the software developed to implement our tiled visualization approach, including the multi-GPU network layout, rendering, display and interaction components, are made available as open-source software.