Reactions of iridium trichloride hydrate with bulky 2-(9-anthracenyl)-1-phenyl-benzimidazole (anbi) in the presence of N-donor ligands afforded a number of unique noncyclometalated complexes, while attempts to prepare a common μ-chloro-bridged bis-cyclometalated dimer systematically gave a monocyclometalated complex cis-[Ir(C,N-anbi)(N-anbi)Cl2] instead. The obtained complexes were characterized by 1H NMR, high-resolution mass spectrometry, single-crystal and powder X-ray diffraction, UV-vis spectroscopy, and cyclic voltammetry. The noncyclometalated complexes fac-[Ir(N-anbi)(N^N)Cl3)], where N^N are 4,4'-disubstituted 2,2'-bipyridines, are octahedral and contain the anthracene and 2,2'-bipyridine units in a close cofacial arrangement. These complexes were found to be exceptionally inert to the chloride ligand exchange even in the presence of silver triflate, forming a rare trinuclear Ir-μ-Cl3-Ag-μ-Cl3-Ir structure instead. In the monocyclometalated complex, the Ir(III) ion is pentacoordinated in a rare square-pyramidal geometry, where the bulky anthracene fragment is involved in the steric shielding of the metal center. This is in line with the results of gas-phase density functional theory calculations, demonstrating that the experimentally observed structure is energetically most preferable. The monocyclometalated complex is deeply colored due to intense charge-transfer absorption bands in the range 450-650 nm with ε = 2000-5000 M-1 cm-1, superior to the noncyclometalated complexes. The synthesis, structures, and properties of the new complexes are discussed in the context of the related mono-, bis-, and noncyclometalated iridium(III) compounds.
Read full abstract