The Galactic Center H(II) region, G0.18-0.04, the 'Sickle', is located where the nonthermal 'Arc' crosses the Galactic plane. The Sickle appears to be the ionized edge of a dense molecular cloud. The source of ionization has been ascribed to both the interaction of the cloud with the magnetic field of the Arc and to the hot stars in the adjacent cluster, AFGL 2004, also known as the 'Quintuplet Cluster'. This paper addresses the relative locations of the stars, the ionized and molecular gas, and the sources of gas excitation and dust heating. Using NASA's Kuiper Airborne Observatory, we have observed the far infrared forbidden lines of [S(III)] 18.7 and 33.5 micrometers, [Si(II)] 34.8 micrometers, [Ne(III)] 36.0 micrometers, [O(III)] 51.8 and 88.4 micrometers, [N(III)] 57.3 micrometers, [O(II)] 63.2 and 146 micrometers, [C(II)] 158 micrometers, and [N(II)] 205 micrometers and the adjacent continua at 11 positions around G0.18-0.04, including G0.15-0.05, the 'Pistol', in a beamsize of 40 - 60 arcsec. The electron density, the ionic abundances, and the ionization structure of the H(II) region are estimated from the doubly ionized line fluxes. The density and radiation field found in the photodissociation region (PDR) between the H(II) region and the molecular cloud are estimated from the [C(II)] and [O(I)] line fluxes and the far-infrared continuum. We compare the ionization structure and the PDR properties to shell models of H(II) regions with varying distances from their exciting stars. The agreement of observations and models indicates that the hot stars of AFGL 2004 are the likely source of ionization of the Sickle. Additional hot stars are necessary to ionize the more outlying positions. However, because of its low ionization and high PDR radiation field, the Pistol cannot be as close to AFGL 2004 as indicated by its close proximity on the sky. Instead, the Pistol is probably ionized by the luminous blue variable candidate, Pistol Source A. We estimated the extinction to the region from the distribution of the J, H, and K' magnitudes of the stars in the field that we measured from the Anglo-Australian telescope and from the IRAS LRS spectrum of AFGL 2004. The extinction is fairly uniform, with no enhancement from the molecular cloud. The strength of Brackett gamma, the 19-micrometer lines and continuum, and the IRAS 25-micrometer continuum are all consistent with the absence of a dense, foreground molecular cloud. We conclude that the H(II) region is on the near side of the dense cloud.
Read full abstract