Biomass-derived carbon quantum dots (CQDs) have the advantage of being green and low-cost, but their complex structure makes the study of their formation mechanism encounter a bottleneck. Lignin-derived CQDs were prepared by a two-step process of “low-temperature liquid depolymerization” coupled with “hydrothermal reaction” in a mild organic acid system. In the first step of the low-temperature acidolysis process, the lignin polymer first undergoes deethering and depolymerization reactions. During the hydrothermal process in the second step, the organic small molecules on the surface of the supernatant are enriched with reactive groups that are dehydrated, condensed, crosslinked, and carbonized under high temperature and pressure to form CQDs. On the other hand, these activated large sp2 carbon domains in the oxidized solid residue from lignin acidolysis undergo hydrothermal cleavage under high-temperature and high-pressure conditions, followed by deoxygenation and eventual decomposition into small carbon domain CQDs products. Among them, the supernatant component C1 after lignin acidolysis with abundant N-H and C-OH reactive groups is targeted as a key precursor for the formation of lignin-derived CQDs, and the resulting CQDs have both the highest QY (19.5%) and yield (16.5%). This study bridges the research gap on the formation mechanism of biomass-derived CQDs and offers a reference for the sustainable preparation of biomass-derived CQDs.
Read full abstract