This study explores the potential of randomly mixed carbon nanotube bundle (RMCB) as a viable on-chip interconnect. Achieving high-quality carbon nanotubes (CNTs) with uniform diameters is challenging for the current framework of enhanced fabrication techniques. The Stoyan and Yaskov technique is employed to optimize CNT arrangement within a specified rectangular area. This method accounts for statistical variation in CNT diameters, offering a more realistic and fabrication-focused approach to designing CNT bundle interconnects. Eight such practical RMCB structures (RMCB-50 to RMCB-350) are selected using this technique, each characterized by distinct CNT counts and variable diameters. Comprehensive average crosstalk-delay and reliability assessments are conducted by comparing different CNT bundle interconnects with the best-optimized RMCB (O-RMCB) interconnect, placed on various dielectric substrates such as SiO2, SiC, BN. The study unequivocally indicates that O-RMCB produces highly favorable results and stands as the most suitable future solution for VLSI circuits. Additionally, the thickness optimization of O-RMCB interconnect is explored, yielding in improvements in both performance and reliability compared to other well-known CNT bundled interconnects.
Read full abstract