The development of smart systems in various architectural structures leads to the fact that if earlier information about the structural condition was not always important, now when talking about the safety of the population, it is a very high-priority information and direction of research. In general, systems for monitoring the condition of structures allow identification, localization and assessment of damage. Such information about the object allows making appropriate decisions in advance to eliminate possible emergency situations. To solve the task of developing a methodology for the design of an automatic structural monitoring system for various architectural structures, a list of stages that allow designing the necessary system was proposed. So, the research is generally divided into three main stages. At the first stage, topologies of sensor networks are considered. Questions regarding the choice of topology for a wireless sensor network are discussed, and the main advantages and disadvantages of each topology are presented. This will allow to choose the right topology for the system. At the second stage, the levels of damage identification that must be performed, which approaches are based on the used algorithms for damage detection are considered. The most popular algorithms used for damage identification are also listed, their disadvantages and advantages were displayed. The third stage is devoted to the selection of the element base of the sensor node, the comparative characteristics of digital and analog accelerometers are highlighted. Also in this section, popular digital accelerometers are presented and an analysis of the characteristics of how and what is affected by each of them is performed. It was described what characteristics should be taken into account when choosing a microcontroller. When designing, it is necessary to take into account the location of sensor nodes and how this affects the distance of data transmission.
Read full abstract