In this paper, we summrize the new development of hardware-acceleration techniques and a parallel conformal Finite-Difference Time-Domain (FDTD) method in computational electromagnetics engineering. We investigate the performance of a parallel conformal FDTD method on different hardware platforms, such as Intel and AMD processors, with vector-arithmetic logic unit (VALU) acceleration, a regular PC cluster, a high-performance server cluster, the use of a graphics-processing unit (GPU), and an IBM CELL processor. The FDTD method, which is parallel in nature, is one of the best candidate numerical methods for using multiple-core processors and computer clusters to efficiently simulate various electromagnetic problems. Several representative examples, such as a UWB (ultra-wideband) antenna array and reflector antennas, are employed to demonstrate the engineering applications of the parallel conformal FDTD method.
Read full abstract