A dispersive liquid-liquid microextraction based on hydrophobic deep eutectic solvent (hDES) was developed for the extraction and quantification of four cinnamic acid derivatives in traditional Chinese medicines coupled with high-performance liquid chromatography-ultraviolet detection. In this method, a hDES (tetrabutylammonium chloride-hexanoic acid, molar ratio of 1:2) was prepared as the extractant. It only took 15 s to handle multiple samples simultaneously by hand-assisted dispersion. The use of a narrow-bore tube reduced the amount of the hydrophobic extractant with easier recovery. The approach was influenced by several key parameters, including the composition and consumption of the DES, sample phase pH, salt amount, extraction time, and centrifugation time, all of which had been investigated and optimized. Moreover, the formation of the DES was characterized by Fourier-transform infrared spectroscopy and differential scanning calorimetry. Under the optimal conditions, enrichment factors of the target analytes ranged from 135 to 220. Satisfactory linearities (r ≥ 0.9977), detection limits (0.2-0.4ng/mL), precision (<8.5%), and accuracy (recoveries: 90.0%-104.6%) were obtained. The method has been successfully applied to the simultaneous extraction and preconcentration of four cinnamic acid derivatives in Chinese medicinal samples with rapidness, high efficiency, and convenience.