The mammalian ovarian follicle is comprised of the germ cell or oocyte surrounded by the somatic cells, the granulosa and theca cells. The ovarian stroma, including the collagen-rich matrix that supports the three-dimensional disk-like follicular structure, impacts the integrity of the ovarian follicle and is essential for follicular development. Maintaining follicular integrity during cryopreservation has remained a limiting factor in preserving ovarian tissues for transplantation because a significant proportion of developed follicles in the frozen-thawed ovaries undergo atresia after transplantation. In this study, we show for the first time that during vitrification of the mouse ovary, the attachment of the oocyte to the granulosa cells was impaired by the loss of the cadherin adhesion molecules. Importantly, exposure to a high osmotic solution greatly decreased the ratio of oocyte diameter to the diameter of its follicle but did not alter the collagen-rich matrix surrounding the follicles. By treating ovaries briefly with collagenase before exposure to the hyper-osmotic solution the ratio of oocyte diameter to follicle diameter was maintained, and cadherin adhesion junctions were preserved. When frozen-thawed ovaries were transplanted to the bursa of recipient hosts, pretreatment with collagenase significantly increased serum levels of AMH, the number of intact follicles and the total number of viable offspring compared to frozen-thawed ovaries without collagenase pretreatment, even 6 months after transplantation. Thus, the collagenase pretreatment could provide a beneficial approach for maintaining the functions and viability of cryopreserved ovaries in other species and clinically relevant situations.
Read full abstract