Исследуется ряд двух- и трехслойных разностных схем, построенных на расширенных шаблонах, до восьмого порядка точности для уравнения Шрёдингера. Наряду с многоточечными схемами рассматривается метод коррекции Ричардсона в приложении к схеме четвертого порядка аппроксимации, повышающий порядок точности путем построения линейных комбинаций приближенных решений, полученных на различных вложенных сетках. Проведено сравнение методов по устойчивости, сложности реализации алгоритмов и объему вычислений, необходимых для достижения заданной точности. На основе теоретического анализа и численных экспериментов выявлены методы, наиболее эффективные для практического применения The efficiency of difference methods for solving problems of nonlinear wave optics is largely determined by the order of accuracy. Schemes up to the fourth order of accuracy have the traditional architecture of three-point stencils and standard conditions for the application of algorithms. However, a further increase in the order in the general case is associated with the need to expand the stencils using multipoint difference approximations of the derivatives. The use of such schemes forces formulating additional boundary conditions, which are not present in the differential problem, and leads to the need to invert the matrices of the strip structure, which are different from the traditional tridiagonal ones. An exception is the Richardson correction method, which is aimed at increasing the order of accuracy by constructing special linear combinations of approximate solutions obtained on various nested grids according to traditional structure schemes. This method does not require the formulation of additional boundary conditions and inversion of strip matrices. In this paper, we consider several explicit and implicit multipoint difference schemes up to the eighth order of accuracy for the Schr¨odinger equation. In addition, a simple and double Richardson correction method is also investigated in relation to the classical fourth-order scheme. A simple correction raises the order to sixth and a double correction to eighth. This large collection of schemes is theoretically compared in terms of their properties such as the order of approximation, stability, the complexity of the implementation of a numerical algorithm, and the amount of arithmetic operations required to achieve a given accuracy. The theoretical analysis is supplemented by numerical experiments on the selected test problem. The main conclusion drawn from the research results is that of all the considered schemes, the Richardson-corrected scheme is the most preferable in terms of the investigated properties