In this paper, state transition waves are investigated in a (2+1)-dimensional Korteweg–de Vries-Sawada-Kotera-Ramani equation by analyzing characteristic lines. Firstly, the N-soliton solutions are given by using the Hirota bilinear method. The breather and lump waves are constructed by applying complex conjugation limits and the long-wave limit method to the parameters. In addition, the transition condition of breather and lump wave are obtained by using characteristic line analysis. The state transition waves consist of quasi-anti-dark soliton, M-shaped soliton, oscillation M-shaped soliton, multi-peak soliton, W-shaped soliton, and quasi-periodic wave soliton. Through analysis, when solitary wave and periodic wave components undergo nonlinear superposition, it leads to the formation of breather waves and transformed wave structures. It can be used to explain the deformable collisions of transformation waves after collision. Furthermore, the time-varying property of transformed waves are studied using characteristic line analysis. Based on the high-order breather solutions, the interactions involving breathers, state transition waves, and solitons are exhibited. Finally, the dynamics of these hybrid solutions are analyzed through symbolic computations and graphical representations.
Read full abstract