AbstractThis study examines the differences related to microphysical properties of ice in thunderstorms over the Amazon and Congo Basin using the Precipitation Feature (PF) data sets derived from passive microwave and radar observations from the Tropical Rainfall Measuring Mission and Global Precipitation Mission Core Satellites. Analysis reveals that Amazon thunderstorms are likely composed of ice crystals smaller but more numerous than those in the Congo Basin, resulting in half as many flashes per PF on average in the Amazon, for similar Ice Water Content (IWC) or Area of 30 dBZ at −10°C (Acharge). The increase of the flash count following an increase of the IWC (Acharge) is only 72% (61%) as effective in the Amazon as it would be in the Congo Basin area. PFs with similar 30 dBZ radar echo top heights exhibit lower Brightness Temperatures (TBs) in the 85/89, 165, and 183 GHz frequencies over the Amazon, indicating more numerous smaller ice particles compared to those over the Congo Basin, which tend to show colder TBs at 37 GHz, possibly due to more numerous large graupel or hail particles. Comparisons of TBs in PFs with similar 30 dBZ echo top temperature between the Amazon and 3 × 3º global grids show that the median TB in Amazon is higher than that in most oceanic areas but is comparable to areas having high oceanic lightning activity (e.g., South Pacific Convergence Zone). It suggests that systems in the Amazon have similarities with maritime precipitation systems, yet with distinct characteristics indicative of land systems.
Read full abstract