Methane is a significant greenhouse gas (GHG), and it is imperative to understand its spatiotemporal distribution and primary sources in areas with higher methane concentrations, as such insights are essential for informing effective mitigation policies. In this study, we employed TROPOMI satellite retrievals to analyze the spatiotemporal patterns of methane distributions and identify major emission sources in South Korea over the period from August 2018 to July 2019. Additionally, we examined the spatial correlations between satellite methane retrievals and emission sources to characterize regions with higher methane levels on an annual basis.Concerning spatial distributions, concentrations exceeding 1870 ppb were predominantly observed in western non-mountainous regions, particularly in rice paddy areas. Moreover, sporadic concentrations exceeding 1880 ppb were detected in large ports and industrial zones, primarily located in coastal regions of South Korea.Our spatial correlation analysis, conducted using the SDMSelect method, identified specific emissions contributing to regions with higher methane concentrations. There were some areas with relatively strong correlations between high XCH4 and emissions from the domestic livestock industry, fossil fuel utilization (specifically, the oil and gas sector), landfills, and rice paddies. This analysis, incorporating domestic emission inventories and satellite data, provides valuable insights into the characteristics of regional methane concentrations. In addition, this analysis can assess national methane emissions inventories, where there is limited information on the spatial distributions, offering critical information for the prioritization of domestic regional policies aimed at reducing greenhouse gas emissions.
Read full abstract