(1) Background. High-level spinal cord injury (SCI) disrupts trunk control, leading to an impaired performance of upright postural tasks in sitting and standing. We previously showed that a novel robotic postural stand training with spinal cord epidural stimulation targeted at facilitating standing (Stand-scES) largely improved standing trunk control in individuals with high-level motor complete SCI. Here, we aimed at assessing the effects of robotic postural stand training with Stand-scES on sitting postural control in the same population. (2) Methods. Individuals with cervical (n = 5) or high-thoracic (n = 1) motor complete SCI underwent approximately 80 sessions (1 h/day; 5 days/week) of robotic postural stand training with Stand-scES, which was performed with free hands (i.e., without using handlebars) and included periods of standing with steady trunk control, self-initiated trunk and arm movements, and trunk perturbations. Sitting postural control was assessed on a standard therapy mat, with and without scES targeted at facilitating sitting (Sit-scES), before and after robotic postural stand training. Independent sit time and trunk center of mass (CM) displacement were assessed during a 5 min time window to evaluate steady sitting control. Self-initiated antero-posterior and medial-lateral trunk movements were also attempted from a sitting position, with the goal of covering the largest distance in the respective cardinal directions. Finally, the four Neuromuscular Recovery Scale items focused on sitting trunk control (Sit, Sit-up, Trunk extension in sitting, Reverse sit-up) were assessed. (3) Results. In summary, neither statistically significant differences nor large Effect Size were promoted by robotic postural stand training for the sitting outcomes considered for analysis. (4) Conclusions. The findings of the present study, together with previous observations, may suggest that robotic postural stand training with Stand-scES promoted trunk motor learning that was posture- and/or task-specific and, by itself, was not sufficient to significantly impact sitting postural control.