Metabolic diseases may be prevented by reducing carbohydrate intake and replacing plant-based diets with animal-based ones low in carbohydrates but high in protein, fat, and iron. While the effects of sugars on metabolic diseases are well-known, the role of iron remains unclear. This study aimed to explore the effects of a high-fat high-iron animal diet on body metabolism in mice. Micro-PET imaging was used to assess 18-F-labelled glucose uptake in BAT, and the morphology, respiratory function, and oxidative stress of BAT mitochondria were examined. The underlying mechanisms were elucidated by analyzing the expression of UCP-1, PGC-1α and PPARα. The high-iron high-fat diet increased appetite, impaired glucose tolerance, and reduced insulin sensitivity. Additionally, the high-iron diet promoted gluconeogenesis only in the absence of high-fat levels. Both high-iron and high-fat diets suppressed BAT activity, increased mitochondrial oxidative stress, decreased mitochondrial respiratory function, and lowered thermogenic gene expression. Weight loss strategies focusing solely on reducing carbohydrates and increasing animal foods, like ketogenic diets, may have long-term detrimental effects on metabolic health. Prioritizing dietary diversity and monitoring overall caloric intake is advisable for optimal outcomes.
Read full abstract