People with type 1 diabetes experience challenges in managing blood glucose around exercise. Previous studies have examined glycaemic responses to different exercise modalities but paid little attention to participants' prandial state, although this is an important consideration and will enhance our understanding of the effects of exercise in order to improve blood glucose management around activity. This review summarises available data on the glycaemic effects of postprandial exercise (i.e. exercise within 2 h after a meal) in people with type 1 diabetes. Using a search strategy on electronic databases, literature was screened until November 2022 to identify clinical trials evaluating acute (during exercise), subacute (≤2 h after exercise) and late (>2 h to ≤24 h after exercise) effects of postprandial exercise in adults with type 1 diabetes. Studies were systematically organised and assessed by exercise modality: (1) walking exercise (WALK); (2) continuous exercise of moderate intensity (CONT MOD); (3) continuous exercise of high intensity (CONT HIGH); and (4) interval training (intermittent high-intensity exercise [IHE] or high-intensity interval training [HIIT]). Primary outcomes were blood glucose change and hypoglycaemia occurrence during and after exercise. All study details and results per outcome were listed in an evidence table. Twenty eligible articles were included: two included WALK sessions, eight included CONT MOD, seven included CONT HIGH, three included IHE and two included HIIT. All exercise modalities caused consistent acute glycaemic declines, with the largest effect size for CONT HIGH and the smallest for HIIT, depending on the duration and intensity of the exercise bout. Pre-exercise mealtime insulin reductions created higher starting blood glucose levels, thereby protecting against hypoglycaemia, in spite of similar declines in blood glucose during activity between the different insulin reduction strategies. Nocturnal hypoglycaemia occurred after higher intensity postprandial exercise, a risk that could be diminished by a post-exercise snack with concomitant bolus insulin reduction. Research on the optimal timing of postprandial exercise is inconclusive. In summary, individuals with type 1 diabetes exercising postprandially should substantially reduce insulin with the pre-exercise meal to avoid exercise-induced hypoglycaemia, with the magnitude of the reduction depending on the exercise duration and intensity. Importantly, pre-exercise blood glucose and timing of exercise should be considered to avoid hyperglycaemia around exercise. To protect against late-onset hypoglycaemia, a post-exercise meal with insulin adjustments might be advisable, especially for exercise in the evening or with a high-intensity component.