This study investigated the hypoglycemic mechanism of guava polysaccharides (GP) through the gut microbiota (GM) and related metabolites. Our findings demonstrated that GP significantly mitigated high-fat diet- and streptozotocin-induced hyperglycemia, insulin resistance, hyperlipidemia, elevated alanine aminotransferase, high hepatic inflammation levels, and prevented pancreatic atrophy and hepatomegaly. Interestingly, the benefits of GP were attributed to alterations in the GM. GP decreased the ratio of Firmicutes to Bacteroidetes, significantly inhibiting deleterious bacteria, including Uncultured_f_Desulfovibrionaceae, Bilophila, and Desulfovibrio, while promoting the proliferation of probiotic Bifidobacterium and Bacteroides. In addition, GP promoted the generation of short-chain fatty acids. Notably, the arachidonic acid (AA) metabolism pathway was enriched in liver metabolites. GP significantly elevated hepatic AA and 15-hydroxyeicosatetraenoic acid, while reducing prostaglandin E2 and 5- and 12-hydroxyeicosatetraenoic acid. This modulation is accompanied by the downregulation of hepatic cyclooxygenase-1, 12-lipoxygenase, P38, and c-Jun N-terminal kinase mRNA expression, and the upregulation of cytochrome P4502J5 and insulin receptor substrate 1/2 mRNA expression. However, GP antibiotic treatment did not induce significant alterations in FBG and AA levels or gene expression. Overall, our findings suggest that the hypoglycemic effect of GP may be intricately linked to alterations in AA metabolism, which depends on the GM.
Read full abstract