With the increasing demand for oil and gas, the depth of some vertical gas wells can reach 6000 m. At this time, the downhole fluid is in a state of high temperature and pressure, and interpretation of the production logging output profile faces the problem of inaccurate production calculations and difficulty judging the water-producing layer. The drift-flux model is usually used to calculate the gas–water two-phase flow. The drift-flux model is widely used to describe the two-phase flow in pipelines and wells because of its accuracy and simplicity. The constitutive correlations used in drift-flux models, which specify the relative motion between phases, have been extensively studied. However, most of the correlations are only extended by laboratory data of small pipe diameters at standard temperature and pressure and do not apply to high-temperature and high-pressure large-diameter gas wells. Therefore, we improved the distribution coefficient and drift velocity of drift-flux correlations in this study for high-temperature and high-pressure gas wells with large pipe diameters. Therefore, this study improved the distribution coefficient and drift velocity of the drift-flux correlations for high-temperature and high-pressure gas wells with large pipe diameters. In practical application, the coincidence rates of gas production and water production calculated by the new drift-flux model were 12.68% and 19.39%, respectively. For high-temperature and high-pressure deep wells, the measurement errors of production logging instruments are significant, and surface laboratory pipelines are challenging to configure and equip with actual high-temperature and high-pressure conditions. Therefore, this study used the method of numerical simulation to study the flow characteristics of the two phases of high-temperature and high-pressure gas and water to provide a basis for identifying the water layer. Combined with the proposed drift-flux correlations and the new method of determining the water-producing layer, a new method of production profile interpretation of high-temperature and high-pressure gas wells is obtained.
Read full abstract