Sixty-eight paired samples of urban surface dust and soil as well as four samples of atmospheric dustfall were collected from the arid city of Urumqi in Northwest China. Thirteen organophosphate esters (OPEs) in these samples were analyzed for the characteristics, sources, bio-accessibility, and health risks of OPEs. The studied OPEs were widely detected in the urban surface dust, soil, and dustfall, with Σ13OPEs (total concentration of 13 OPEs) of 1362, 164.0, and 1367 ng/g, respectively, dominated by tris(2-chloroethyle) phosphate (TCEP), tri(2-chloroisopropyl) phosphate (TCiPP), tri(1, 3-dichloroisopropyl) phosphate (TDCiPP) and tris(2-butoxyethyl) phosphate (TBOEP), TBOEP and tri(2-ethylhexyl) phosphate (TEHP), and TCEP, TCiPP, TBOEP, triphenyl phosphate and TEHP, respectively. The low and high frequency magnetic susceptibility of surface dust and urban soil might indicate the pollution of OPEs in them. Elevated levels of the Σ13OPEs in the surface dust and urban soil were found in the west, south, and northeast of Urumqi city. The total deposition flux of dustfall-bound 13 OPEs ranged from 86.5 to 143 ng/m2/day, with a mean of 105 ng/m2/day. OPEs in the surface dust and urban soil were associated with the emissions of indoor and outdoor products containing OPEs, the dry and wet deposition of atmosphere, and the emissions of traffic. Trimethyl phosphate, triethyl phosphate, tripropyl phosphate, tri-isobutyl phosphate, TCEP, TCiPP, TDCiPP, and TBOEP in surface dust and urban soil had relatively high bio-accessibility. The bio-accessibility of OPEs was mainly affected by the physio-chemical properties of OPEs. The non-cancer and cancer risks of human exposure to OPEs in surface dust and urban soil were relatively low or negligible. The current research results may provide scientific supports for prevention and control of pollution and risks of OPEs.
Read full abstract