Managing feral water buffalo in the Northern Territory is a formidable challenge. As an introduced species, buffalo are associated with a myriad of biosecurity, economic, cultural and environmental issues ranging from overgrazing, decreased water quality, disease vectors to the destruction of cultural assets. Nevertheless, the buffalo are also a harvestable resource that can support economic development of the region. To mitigate some of the biosecurity, economic, cultural and environmental risks they pose and manage buffalo effectively, we need a detailed understanding of their spatial and behavioural ecology. However, several factors make understanding how best to manage the dense populations of wild individuals challenging as buffalo inhabit remote areas with limited infrastructure and accessibility and their large size and often aggressive nature can make them difficult to observe in otherwise inaccessible areas. GPS tracking allows for high-frequency data collection and surveillance of individual buffalo. Here, we investigated how the different seasonal periods of a Northern Territory floodplain area shaped patterns of habitat use for 17 buffalo tracked over 16 months. We found in the dry season, buffalo space use is restricted, and the size of home ranges are significantly smaller than in the wet season. During the wet season, buffalo expand their home range area as well as their social encounter area with other buffalo. These differences in their space use and social patterns suggest that increased disease surveillance may be needed for the wet season when buffalo are more likely to share space and interact. During the dry season, however, buffalo movement is more predictable and restricted, suggesting greater optimisation opportunities for buffalo management. Results from these models can be used by land holders, Traditional Owners and wildlife managers to make evidence-based decisions to improve buffalo management with respect to disease risk, sustainable harvest and damage to environmental and cultural assets.
Read full abstract