We report a giant hysteretic spin Seebeck effect (SSE) anomaly with a sign reversal at magnetic fields much stronger than the coercive field in a (001)-oriented Tb_{3}Fe_{5}O_{12} film. The high-field SSE enhancement reaches 4200% at approximately 105K over its weak-field value and presents a nonmonotonic dependence on temperature. The unexpected high-field hysteresis of SSE is found to be associated with a magnetic transition of double-umbrella spin texture in TbIG. Nearly parallel dispersion curves of magnons and acoustic phonons around this neoteric transition are supported by theoretical calculations, leading to a high density of field-tuned magnon polarons and consequently an extraordinarily large SSE. Our study provides insight into the evolution of magnon dispersions of double-umbrella TbIG and could potentially boost the efficiency of magnon-polarons SSE devices.