This paper explores the potential of AstroPix, a project to develop Complementary Metal Oxide Semiconductor (CMOS) pixels for the next generation of space-based high-energy astrophysics experiments. Multimessenger astrophysics is a rapidly developing field whose upcoming missions need support from new detector technology such as AstroPix. ATLASPix, a monolithic silicon detector optimized for the ATLAS particle detector at CERN, is the beginning of the larger AstroPix project. Energy resolution is a driving parameter in the reconstruction of gamma-ray events, and therefore the characterization of ATLASPix energy resolution is the focus of this paper. The intrinsic energy resolution of the detector exceeded our baseline requirements of <10% at 60 keV. The digital output of ATLASPix results in energy resolutions insufficient to advance gamma-ray astronomy. However, the results from the intrinsic energy resolution indicate the digital capability of the detector can be redesigned, and the next generation of pixels for the larger AstroPix project have already been constructed. Iterations of AstroPix-type pixels are an exciting new technology candidate to support new space-based missions.