Polymer piezoelectrics hold great potential for energy harvesting and wearable electronics. Efforts have been dedicated to enhancing piezoelectric coefficients and thermostability for several decades, but most of these have not been successful. In this report, we demonstrate a straightforward way to achieve high piezoelectric coefficients and output voltages while maintaining high thermostability at temperatures over 110 °C. Poly(vinylidene fluoride-co-trifluoroethylene) [P(VDF-TrFE)] 80/20 mol.% nanofiber mats (made by electrospinning) with extremely high crystallinity and Curie temperatures were obtained via a two-step annealing process, from which large ferroelectric domains were formed in extended-chain crystals. After corona poling using water, which is a high dielectric constant medium, giant piezoelectricity (apparent d33 = 1020 ± 20 pC/N) and high output voltages (29.9 ± 0.5 V) were achieved. It is found that the dimensional effect induced significant polarization changes, which is the key requirement for piezoelectricity. Our finding in this work paves a way to further improve high-performance polymer piezoelectrics.
Read full abstract