AimsAcute heart failure (AHF) is typified by inflammatory and oxidative stress responses, which are associated with unfavorable patient outcomes. Given the anti-inflammatory and antioxidant properties of high-density lipoprotein (HDL), this study sought to examine the relationship between impaired HDL function and mortality in AHF patients. The complex interplay between various HDL-related biomarkers and clinical outcomes remains poorly understood. MethodsHDL subclass distribution was quantified by nuclear magnetic resonance spectroscopy. Lecithin–cholesterol acyltransferase (LCAT) activity, cholesterol ester transfer protein (CETP) activity, and paraoxonase (PON-1) activity were assessed using fluorometric assays. HDL-cholesterol efflux capacity (CEC) was assessed in a validated assay using [3H]-cholesterol-labeled J774 macrophages. ResultsAmong the study participants, 74 (23.5 %) out of 315 died within three months after hospitalization due to AHF. These patients exhibited lower activities of the anti-oxidant enzymes PON1 and LCAT, impaired CEC, and lower concentration of small HDL subclasses, which remained significant after accounting for potential confounding factors. Smaller HDL particles, particularly HDL3 and HDL4, exhibited a strong association with CEC, PON1 activity, and LCAT activity. ConclusionsIn patients with AHF, impaired HDL CEC, HDL antioxidant and anti-inflammatory function, and impaired HDL metabolism are associated with increased mortality. Assessment of HDL function and subclass distribution could provide valuable clinical information and help identify patients at high risk.